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Abstract
We have considered partially ionized hydrogen plasma for the density region
ne = (1018–1022) cm−3. Charged particles in the system (electrons, protons)
interact via an effective potential taking into account three-particle correlations.
We use the Buckingham polarization potential to describe electron–atom
and proton–atom interactions. The electrical and thermal conductivity is
determined using the Chapman–Enskog method. We compare the obtained
results with other available data.

PACS numbers: 52.20.Fs, 52.25.Fi

1. Introduction

The transport properties of dense partially ionized hydrogen plasma play a crucial role in the
study of non-ideal plasma existing in different astrophysical objects and technical devices.
Dense non-ideal plasma is formed by shock compression experiments [1], in pinch discharges
[2], magnetohydrodynamics (MHD) generators, and in the realization of inertial confinement
fusion [3]. In particular, the electrical conductivity determines an important characteristic
such as the efficiency of pulsed power machines in inertial confinement fusion experiments
[4]. Knowledge of thermal conductivity for a large domain of densities and temperatures is
necessary for the calculation of the energy balance of astrophysical objects [5]. In several
papers [6, 7] the transport properties have been investigated for a partially ionized hydrogen
plasma. There, the Debye–Hückel (DH) potential valid for the low density plasma within the
pair correlation approximation [8] has been used for describing the charged particle interaction.
For a dense plasma, many-particle correlation effects should be taken into account. From such
a point of view, the main goal of the present work is to investigate the influence of three-
particle correlations in a charged subsystem on the transport properties and ionization degree
of non-ideal hydrogen plasma containing charges and neutrals.
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In the following, we present the calculations of transport properties performed within the
framework of the Chapman–Enskog method. Due to the long-range character of the Coulomb
interaction leading to well-known divergences of the collision integrals, it is difficult to apply
this method for the calculation of transport properties in plasmas. This problem can be solved
by considering the screening between charged particles through the dielectric function of the
medium leading to effective, density- and temperature-dependent potentials. Both dynamic
[10, 11] and static screening effects [12, 13] have been studied for non-ideal plasmas.

In [14], the scattering cross sections and the electrical conductivity of fully ionized
hydrogen plasma have been determined. In this paper, we generalize this approach to the
case of a partially ionized hydrogen plasma where neutral atoms may occur. We consider the
temperature range T = (15–100) × 103 K and the number densities ne = (1018–1022) cm−3.
The scattering cross sections have been calculated to be fully quantum mechanical using
methods with the scattering phase shifts δl obtained from the numerical solution of the
Schrödinger equation with corresponding interaction potential. The plasma composition
(degree of ionization) is determined from a simple Saha equation that takes into account the
lowering of the ionization energy of hydrogen atoms. The electrical and thermal conductivities
of partially ionized hydrogen plasma have been calculated within the Chapman–Enskog
method using the results for the plasma composition and transport cross sections. The results
have been compared with the experiments and theoretical approaches of other authors.

2. Interaction models

It is known that charged particles in plasma interact by long-range Coulomb potential, and
that the configurational integrals for the average of physical quantities are diverging. We
have to take into account collective effects such as screening of charge fields. Within the
simplest approximation, i.e. treating the polarization function in random phase approximation
(RPA) and performing the static as well as long-wavelength limit, the DH potential can be
derived [10]. The DH potential applies for low-density plasmas where the pair correlations
are dominant [8]. With increasing plasma density, also higher many-particle correlations have
to be taken into account. For instance, the concept of local-field corrections is utilized, which
becomes important at very high, metallic densities, see [15].

Another approach to treat screening effects beyond the DH theory has been developed in
[9, 12, 13]. There, an integro-differential equation for effective potential �̃qk of the particle
interaction (generalized Poisson–Boltzmann equation) taking into account the simultaneous N
particle correlations was obtained on the basis of sequential solution of the Bogolyubov chain
equations for the equilibrium particle distribution function of a classical non-ideal plasma:
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Here �̃qk

(
q �ri ,

k �rj

)
is two-body effective potential taking into account N particle correlation

effects; �ij = aeiej /|ri − rj |; a = 1 in the CGS system; θ = kBT , ek, eq are charges of the
interacting particles; �i is the Laplace operator; ∇ is the gradient operator; Ak = (Nk −νk)/V
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is a normalization coefficient; and νk and Nk are the number of particles in s and total systems,
respectively. V is the volume of system, δ(r) is the Dirac delta function, and summation
excludes i = j . The three-particle approximation equation for the effective potential can be
obtained from equation (1)

�� − � = ±�2 (2)

where �(R) is the effective potential expressed in units kBT . Minus and plus signs in
equation (2) correspond to the interaction of particles with equal or opposite charge,
respectively.

Equation (2) with boundary conditions �|R→0 = γ /R; �|R→∞ = 0 has no analytical
solution. In this paper, we use the analytical interpolation formula for the numerical solution of
equation (2), obtained in [12] by application of the spline approximation. The final expression
for the pseudopotential of particle interaction in non-ideal plasma is

�(R) = γ

R
e−R 1 + γf (R)

1 + c(γ )
f (R) = 1

10
(e−√

γ R − 1)(1 − e−2R). (3)

The interparticle distance r is scaled by the Debye screening length rD,R = r/rD .
The parameter γ = e2/(rDkBT ) characterizes the non-ideality of plasma. The potential is
expressed in terms of thermal energy, �(R) = �̃(R)/kBT . c(γ ) is a correction function
for different values of γ : c(γ ) = −0.008 617 + 0.455 861γ − 0.108 389γ 2 + 0.009 377γ 3.
Notice that the effective potential (3) rapidly decreases with increasing distance due to
screening effects. In fact, due to the consideration of three-particle correlations, the effective
potential shows stronger screening than the DH potential where only two-particle correlations
are included [12].

The interaction between charged particles (β = e, p) and neutral atoms (a) is described
by a screened polarization potential of the Buckingham form [16]

�βa(r) = − e2αD

2
(
r2 + r2

0

)2 exp(−2r/rD)(1 + r/rD)2 (4)

where αD is the polarizability of atoms and r0 is a cut-off radius. For hydrogen plasma we use
αD = 4.5a3

B and r0 = 1.45aB, where aB is the Bohr radius.

3. The scattering cross sections

The transport cross sections QT for plasma particles α, β = e, p, a are related to the scattering
phase shifts (SPS) in first- and second-order approximations [17, 18] as

Q
T (1)
αβ (k) = 4π

k2

∞∑
l=0

(l + 1) sin2 (
δ
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l+1(k) − δ
αβ

l (k)
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QT (2)
ee (k) = 2π
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l + 3/2
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δee
l (k) − δee
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]
.

In this paper, we use two methods to calculate the SPS: the partial wave expansion [20]
and the semiclassical (WKB) approximation [17].

For the lowest orbital quantum numbers in the range 0 � l � 20 the SPS are obtained
from the radial Schrödinger equation

d2

dr2
ul(r) +

[
k2 − l(l + 1)

r2
− 2µαβ

h̄2 �αβ(r)

]
ul(r) = 0 (6)
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Figure 1. (a) Phase shifts for the first four angular momenta calculated by the WKB approximation
(- - - -) and by the numerical solution of the Calogero equation (——). (b) Curves of the phase
function for different partial waves.

where �αβ(r) is the particle interaction potential. The wavenumber k is related to the kinetic
energy E of relative motion as k2 = 2µαβE/h̄2; µαβ is the reduced mass of the particles. To
solve equation (6) we have used the amplitude-phase method. The wavefunction ul(r) may
be written as

ul(r) = Al(r)
[
cos δ

αβ

l (r)ĵ l(kr) − sin δ
αβ

l (r)n̂l(kr)
]

(7)

where Al(r) is the amplitude function, and ĵ l(kr) and n̂l(kr) are Riccati–Bessel functions.
In this paper, the recurrence relations for these functions are used which are associated with
the Bessel and Neumann functions [19]. After inserting expression (7) into equation (6), the
Calogero equation for the SPS δ

αβ

l (r) is obtained [20]:

d

dr
δ

αβ

l (r) = −1

k
Vαβ(r)

[
cos δ

αβ

l (r)ĵ l(kr) − sin δ
αβ

l (r)n̂l(kr)
]2

. (8)

Here Vαβ(r) = 2µαβ�αβ(r)/h̄2. The SPS δ
αβ

l (k) is determined by the asymptotic values
of phase functions δ

αβ

l (r) at r → ∞. Consequently, for the calculation of SPS δ
αβ

l (k) it is
necessary to solve the nonlinear differential equation (8) with the initial condition δ

αβ

l (0) = 0.
The numerical evaluation of ĵ l(kr), n̂l(kr) functions by recurrence relations is difficult for
higher orbital quantum numbers. Fortunately, the semiclassical WKB approximation becomes
increasingly accurate for higher orbital quantum numbers so that we have used this method for
l > 20; for more details, see [17]. Figure 1(a) shows the phase shifts which were calculated
with both methods for the first four angular momenta as a functions of the wavenumber value.
It is shown that the WKB results become more applicable with the increase in energy. The
asymptotic behaviour of the phase shifts is shown in figure 1(b).

4. Transport properties

The transport properties of non-ideal, non-degenerate hydrogen plasma are calculated by the
standard Chapman–Enskog method within a two-momentum approximation. The collision
integrals Inm = I ee

nm +I
ep
nm +I ea

nm can be separated with respect to the scattering processes of free
electrons at other electrons, protons and atoms. These contributions are given by the transport
cross sections QT

αβ(k), see equation (5). The electrical conductivity can be evaluated from the
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Table 1. The 1s ground-state energy Ẽ10 of hydrogen atoms for different screening lengths rD
and non-ideality parameters γ calculated from the Schrödinger equation for the DH potential and
effective potential (3).

Ẽ10 (eV) Ẽ10 (eV)
rD/aB γ Debye potential equation (3)

315.000 0.01 −13.398 −13.132
31.500 0.10 −12.018 −11.258
15.750 0.20 −10.745 −9.261
10.500 0.30 −9.682 −7.780
2.864 1.10 −5.022 −2.681
1.750 1.80 −3.285 −1.408

following expression [21, 22]:

σ = 3e2

2
√

2mekBT

I11

I00I11 − I10I01

I ec
nm = 2nc√

π

∫ ∞

0
dxQT

ec(x)S3/2
n (x)S3/2

m (x)x2 e−x (9)

I ee
nm = 2ne

√
2

π

∫ ∞

0
dyQT

ee(y)Rnm(y)y3 e−y .

We define x = h̄2k2/(2mekBT ), y = 2x, and c = i, a. S
3/2
n are Sonine polynomials of the

order 3/2 (for details, see [7, 23]) and ne, ni and na are the density numbers of electrons, ions
and atoms, respectively.

The plasma composition, i.e. the ionization degree, is obtained from a simple Saha
equation. We consider only hydrogen atoms and neglect other bound states, in particular
molecules H2. These are important at low temperatures which we will not treat here. The
Saha equation reads

1 − α

α2
= ntot

e �3 exp(−βẼ10(rD)). (10)

The degree of ionization is defined by α = ne/n where n = ne + na is the total electron
density in the plasma. � = h/

√
2πmekBT is the electron thermal wavelength. The energy

of the hydrogen 1s ground state Ẽ10 is determined by solving the eigenvalue problem of
the radial Schrödinger equation with respect to the effective electron–proton potential (3).
Correlation effects become important with increasing plasma density. Especially, three-
particle correlations have been shown to be important for the transport and thermodynamics
properties of fully ionized, non-ideal plasmas [12–14, 24, 25] which were treated using the
effective potential (3). Therefore, we study the influence of such three-particle correlations
on ionization equilibrium (10) by calculating the ground-state energies with respect to the
effective potential (3).

The results for both interaction models, the effective potential (3) and the DH potential are
shown for various Debye screening lengths rD and non-ideality parameters γ in table 1. It can
be seen that the ground-state energies derived from the effective potential (3) show pronounced
deviations from the DH results, especially for larger values of non-ideality parameters. The
results for the degree of ionization are shown in figure 2 for various temperatures as a function
of density.
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Figure 2. Degree of ionization for hydrogen plasma for various temperatures as a function of the
total electron density n.
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Figure 3. (a) Reduced electrical conductivity σ ∗ as a function of the non-ideality parameter γ :
(——), present results using equation (9); (· · · ·), Spitzer theory; ∗- - -∗, results of Ichimaru and
Tanaka [29] based on a generalized Ziman formula; (- - - -) and (−·−·−), previous data for fully
ionized hydrogen plasma [14, 24]; (··−··): T matrix results [6, 7]; (�), ( �) experimental data
from [30, 31]; (◦) and ( � ), experimental data from [32]. (b) Thermal conductivity λ of partially
ionized hydrogen plasma (- - - -) at the various temperatures compared with results for the fully
ionized case (——) as a function of the total electron density n. The dash-dotted line (— · —)

presents the results of [6] at T = 15 kK.

The dimensionless electrical conductivity

σ ∗ = e2m
1/2
e

(4πε0)
2 (kT )3/2 σ (11)

is shown in figure 3(a) as a function of the non-ideality parameter γ .
We compare our results for the electrical conductivity with the Spitzer theory [27], with

results based on T matrix calculations [6, 7, 23, 28], with the previous results by Nurekenov
et al [14] using the partial wave method and of Ramazanov et al [24] using a Coulomb
logarithm for non-ideal plasma [25], as well as with the results of Ichimaru and Tanaka [29]
using a generalized Ziman formula. The available experimental data of Radtke et al [30, 31]
and Ivanov et al [32] are also shown.
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For ideal plasmas γ 	 1, we have good agreement with Spitzer theory. The previous
results for the fully ionized case agree well with the present data for the partially ionized
plasma if γ � 0.1. The divergence between these results can be treated by the difference
in plasma composition in the considered region of non-ideality. For higher non-ideality
parameters, the electrical conductivity of the partially ionized plasma is substantially lower.
Up to γ ≈ 0.3 we have a reasonable coincidence with the experimental data [30–32]. In
the weak coupling regime γ ≈ (0.4–0.7) we have good agreement with the values obtained
in T matrix calculations [6, 7]. Such behaviour is a result of the small difference in this
region between model (3) and the DH potential. At γ � 1 we have good agreement with the
experimental data of Ivanov et al [32].

The thermal conductivity was calculated within the second expansion by Sonine
polynomials and reads

λ = 4

∣∣∣∣∣∣∣
L00

ej L01
ej 0

L10
ej L11

ej xi

0 xj 0

∣∣∣∣∣∣∣∣∣∣∣∣
L00

ej L01
ej

L10
ej L11

ej

∣∣∣∣∣
. (12)

Here L00
ej are the matrix elements corresponding to the respective transport cross sections of

the plasma’s components, (j = e, i, a). xi = ni/n , where ni is the plasma component
density (i = e, i, a), and n is the total density of plasma particles. For instance, see [34]
where expression (12) is described in detail. The results of the calculation of the thermal
conductivity for various temperatures are shown in figure 3(b). It is shown that taking into
account the neutral particles is more important at low temperatures and high densities. In our
approach the neutral particles are negligible at temperatures higher than 50 kK at all density
regions. In the low-density region our results have good agreement with the calculations of [6]
in the framework of linear response theory on the basis of the DH potential, but are essentially
different in the high-density region.

5. Conclusions

In this paper, we have investigated the component composition and the transport properties
(electrical and thermal conductivity) of partially ionized hydrogen plasma using effective
potentials for the interaction between the particles (electrons, protons, atoms). It is shown
that the present results for electrical conductivity using the effective potential, which takes
into account three-particle correlations for the dense charged subsystem, have good agreement
with Spitzer theory at low densities (γ 	 1) as well as with available experimental data in the
high coupling regime (γ > 1). Also, the results show that it is important to take into account
neutral particles for the calculation of the electrical and thermal conductivities for non-ideal
plasmas at lower temperatures, i.e. for plasmas with γ > 0.1 and T < 300 00 K. This can be
seen from the comparison of the present results with the theoretical results of the approach
of full ionization with the same model of interaction (for instance, see results of [14, 24] for
fully ionized plasma in figure 3(a)). The results for the ionization equilibrium clearly indicate
that taking into account the three-particle correlations in charged particle interaction leads to
increasing of the ionization degree relatively to the results, on the basis of the DH potential
(see table 1). The consideration of further effects, such as the formation of molecules H2 at
low temperatures, is possible; see [33].
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